RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION

EXAMEN DU BACCALAURÉAT	Session principale 2023		
Épreuve : Mathématiques	Section : Sport		
Durée : 2h	Coefficient de l'épreuve : I		

N° d'inscription				

Le sujet comporte 4 pages numérotées de 1/4 à 4/4 .

La page 4/4 est à rendre avec la copie.

BBBBBBB

Exercice n°1 (6 points)

Un sac contient cinq jetons indiscernables au toucher dont trois portent le mot « tennis » et deux portent le mot « foot ».

Une épreuve consiste à tirer simultanément et au hasard deux jetons du sac.

On considère les évènements suivants :

A: « obtenir deux jetons qui portent le mot « foot » ».

B: « Obtenir au moins un jeton qui porte le mot « tennis » ».

C: « Obtenir au plus un jeton qui porte le mot « tennis » ».

- 1) Calculer p(A), p(B) et p(C).
- 2) Soit X la variable aléatoire qui à chaque épreuve, associe le nombre de jetons qui portent le mot « foot ».
 - a) Justifier que les valeurs prises par X sont 0, 1 et 2.
 - b) Déterminer la loi de probabilité de X.
 - c) Calculer E(X).

Exercice n°2 (7 points)

Soit
$$(u_n)$$
 la suite réelle définie sur $\mathbb N$ par :
$$\begin{cases} u_o = 3 \\ u_{n+1} = \frac{1}{2} \ u_n + 2 \quad pour \ tout \ n \in \mathbb N. \end{cases}$$

- 1)a) Calculer u_1 et u_2 .
 - b) Justifier que la suite (u_n) n'est ni arithmétique ni géométrique.
- 2) Soit (v_n) la suite réelle définie sur $\mathbb N$ par, $v_n=u_n-4$.
- a) Montrer que (v_n) est une suite géométrique de raison $\frac{1}{2}$.
- b) Justifier que pour tout entier naturel $\,n$, $\,v_n=-rac{1}{2^n}\,.$
- c) En déduire $\ u_n$ en fonction de $\ n$.
- d) Calculer la limite de (u_n) .
- 3) Pour tout entier naturel $\,n$, on donne la somme $\,{\rm S}_n = v_0 + v_1 + \cdots + v_n$.
- a) Montrer que $S_n = \frac{1}{2^n} 2$.
- b) En déduire la limite de $\,{\rm S}_n\,$.
- c) Déterminer la plus petite valeur de n pour laquelle $\mathrm{S}_n < -1{,}999$.

Exercice n°3 (7points)

On considère la fonction f définie $\sup]-2$, $+\infty [$ par $f(x)=\ln (e \cdot x+2e)$.

On désigne par (C_f) sa courbe représentative dans un repère orthonormé $(0,\vec{\iota}\,,\vec{j})$.

- 1)a) Vérifier que $f(0) = 1 + \ln 2$ et que $f(\frac{1}{e} 2) = 0$.
 - b) Calculer $\lim_{x \to (-2)^{+}} f(x)$ et $\lim_{x \to +\infty} f(x)$.
 - c) Montrer que pour tout réel x de]-2, $+\infty[$, $f'(x) = \frac{1}{x+2}$.
 - d) Dresser le tableau de variation de $\,f\,$.

- 2)a) Vérifier que le point A(-1,1) appartient à la courbe (C_f) .
 - b) Montrer qu'une équation de la tangente Δ à la courbe (C_f) au point $A \ {\rm est} \ \ y = x+2 \ .$
- 3) Dans l'annexe-jointe, on a placé les points A(-1,1), $B(0,1+\ln 2)$ et $C(\frac{1}{e}-2,0)$. Tracer dans l'annexe, la tangente Δ et la courbe (C_f) .
- 4) Soit F la fonction définie sur]-2, $+\infty[$ par F(x)=(x+2)ln(x+2).
 - a) Vérifier que pour tout réel x de $]-2,+\infty[$, f(x)=1+ln(x+2).
 - b) Montrer que F est une primitive de f sur $]-2,+\infty[$.
 - c) Calculer l'aire de la partie du plan limitée par (C_f) , l'axe des abscisses et les droites d'équations x=-1 et x=0.

	Section:	Signatures des surveillants
	Nom et Prénom :	
	Date et lieu de naissance :	
×	国际自由自由的	

Épreuve: Mathématiques - Section : Sport Session principale (2023) Annexe à rendre avec la copie

